1,006 research outputs found

    Low intensity H-beta emission from the interstellar medium

    Get PDF
    A search for diffuse galactic H beta emission not associated with any known H II regions was conducted using a 2-inch-diamenter pressure-scanned Fabry-Perot spectrometer at the Coude focus of a 36-inch telescope. Observations were made near the directions of four pulsars. Emissions with intensities from 40,000 to 400,000 photons/sq cm sec ster (corresponding to emission measures of approximately 10 - 100) were detected in three of the directions. The data indicate an average ionization rate (assuming steady state) of approximately 10 to the minus 14th power/H-atom sec for the interstellar hydrogen in these directions and temperatures between 1000 and 10,000 K for the emitting regions. Plans were made to continue the investigation of these very faint hydrogen emission sources using a 6-inch-diameter Fabry-Perot spectrometer

    Temperatura de cocultivo na transformação transiente de trigo mediada por Agrobacterium tumefaciens.

    Get PDF
    Editores técnicos: Joseani Mesquita Antunes, Ana Lídia Variani Bonato, Mårcia Barrocas Moreira Pimentel

    The hadronic models for cosmic ray physics: the FLUKA code solutions

    Get PDF
    FLUKA is a general purpose Monte Carlo transport and interaction code used for fundamental physics and for a wide range of applications. These include Cosmic Ray Physics (muons, neutrinos, EAS, underground physics), both for basic research and applied studies in space and atmospheric flight dosimetry and radiation damage. A review of the hadronic models available in FLUKA and relevant for the description of cosmic ray air showers is presented in this paper. Recent updates concerning these models are discussed. The FLUKA capabilities in the simulation of the formation and propagation of EM and hadronic showers in the Earth's atmosphere are shown.Comment: 8 pages, 9 figures. Invited talk presented by M.V. Garzelli at ISVHECRI2006, International Symposium on Very High Energy Cosmic Rays, Weihai, China, August 15 - 22 200

    Observed and Modeled Solar Cycle Variation in Geocoronal Hydrogen Using NRLMSISE-00 Thermosphere Conditions and the Bishop Analytic Exosphere Model

    Get PDF
    High precision observations during Solar Cycle 23 using the Wisconsin H‐alpha Mapper (WHAM) Fabry‐Perot quantify a factor of 1.5 ± 0.15 higher Balmer α column emission intensity during near‐solar‐maximum than during solar minimum conditions. An unresolved question is how does the observed solar cycle variation in the hydrogen column emission compare with that calculated from the hydrogen distribution in atmospheric models? We have compared WHAM solar minimum and near‐solar‐maximum column intensity observations with calculations using the thermospheric hydrogen density profile and background thermospheric conditions from the Mass Spectrometer Incoherent Scatter (NRLMSISE‐00) empirical model extended to exospheric altitudes using the analytic exosphere model of Bishop (1991). Using this distribution, we apply the lyao_rt global resonance radiative transfer code of Bishop (1999) to calculate expected intensities that would be observed from the ground for the viewing conditions of the observations. The observed intensities are brighter than those calculated for the corresponding conditions, indicating that when MSIS is used as the thermospheric hydrogen distribution the derived intensities are too low. Additionally, both the observed and calculated WHAM hydrogen column emission intensities are higher for near‐solar‐maximum than for solar minimum conditions. There is better agreement between observations and intensities calculated using the evaporative analytic exosphere model at solar maximum, suggesting an underestimation of modeled satellite atoms at high altitudes. This result is consistent with sensitivity studies using the option for a quasi‐exobase for satellite atoms to account for the creation of satellite orbits from charge exchange collisions

    The Geocoronal H α Cascade Component Determined from Geocoronal H ÎČ Intensity Measurements

    Get PDF
    Geocoronal H α and H ÎČ intensity measurements using the Wisconsin H α Mapper Fabry-Perot are used to determine the intensity of the H α cascade component. From basic atomic physics and the work of Meier (1995), we show that the total cascade in geocoronal H α emission is 0.52 ± 0.03 times the geocoronal H ÎČ intensity, I(H ÎČ), for solar Lyman series excitation of geocoronal hydrogen. The results are consistent with the H α cascade measurements of Mierkiewicz et al. (2012), which were determined directly from the analysis of H α line profile measurements, and significantly narrow the range of uncertainty in the cascade measurement. Accounting for cascade is essential in determining exospheric effective temperatures and dynamics from the shape of the geocoronal H α line. --From publisher\u27s website

    Observed Seasonal Variations in Exospheric Effective Temperatures

    Get PDF
    High spectral resolution line profile observations indicate a reproducible semi-annual variation in the geocoronal hydrogen Balmer α effective temperature. These observations were made between 08 January 2000 and 21 November 2001 from Pine Bluff Observatory (WI) with a second generation double etalon Fabry-Perot annular summing spectrometer operating at a resolving power of 80,000. This data set spans sixty-four nights of observations (1404 spectra in total) over 20 dark-moon periods. A two cluster Gaussian model fitting procedure is used to determine Doppler line widths, accounting for fine structure contributions to the line, including those due to cascade; cascade contributions at Balmer α are found to be 5 ± 3%. An observed decrease in effective temperature with increasing shadow altitude is found to be a persistent feature for every night in which a wide range of shadow altitudes were sampled. A semiannual variation is observed in the column exospheric effective temperature with maxima near day numbers 100 and 300 and minima near day numbers 1 and 200. Temperatures ranged from ∌710 to 975 K. Average MSIS model exobase temperatures for similar conditions are approximately 1.5× higher than those derived from the Balmer α observations, a difference likely due to contributions to the observed Balmer αcolumn emission from higher, cooler regions of the exosphere

    A Spatial Heterodyne Spectrometer for Laboratory Astrophysics; First Interferogram

    Get PDF
    A Spatial Heterodyne Spectrometer with broad spectral coverage across the VUV - UV region and with a high (> 500,000 ) spectral resolving power is being built for laboratory measurements of spectroscopic data including emission branching fractions, improved level energies, and hyperfine/isotopic parameters
    • 

    corecore